COURSE DESCRIPTION CARD - SYLLABUS

Course name

Mathematics

Course

Field of study
Aviation
Area of study (specialization)
-
Level of study
First-cycle studies
Form of study
full-time

Year/Semester

1 / 1
Profile of study
general academic
Course offered in
Polish
Requirements compulsory

Number of hours

Lecture
15
Tutorials
30
Number of credit points

4

Lecturers

Responsible for the course/lecturer:
dr Marek Adamczak
email: marek.adamczak@put.poznan.pl
tel. 61-665-2687
Wydział Automatyki, Robotyki i Elektrotechniki
ul. Piotrowo 3A, 60-965 Poznań

Responsible for the course/lecturer: dr hab. Maciej Ciesielski
email: maciej.ciesielski@put.poznan.pl
tel. 616652839

Instytut Matematyki, Zakład Analizy
Funkcjonalnej i Numerycznej
ul. Piotrowo 3A, 60-965 Poznań

Prerequisites

Knowledge: Student has knowledge of mathematics at the secondary school level -
Skills: Student is able to solve problems and has the ability to use mathematical tools to solve tasks in the field of secondary school -

Social competencies: The student understands the need for continuous improvement of competences (language, professional and social) and knows the importance of higher mathematics methods in the description of engineering and technical issues. Can independently search for information in the literature.

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course objective
The main aim is the understanding of basic notions and methods theory in order to apply them to solving engineering and technical problems.

Course-related learning outcomes

Knowledge

1. has extended and in-depth knowledge of mathematics including algebra, analysis, theory of differential equations, probability, analytical geometry as well as physics covering the basics of classical mechanics, optics, electricity and magnetism, solid state physics, thermodynamics, useful for formulating and solving complex technical tasks related to engineering aeronautical and modeling

Skills

1. can use the mathematics (differential and integral calculus) to describe simple engineering problems.

Social competences

1. is aware of the importance of knowledge in solving engineering problems and knows examples and understands the causes of faulty engineering projects that have led to serious financial and social losses, or to a serious loss of health and even life
2. is aware of the social role of a technical university graduate, in particular understands the need to formulate and provide the society, in an appropriate form, with information and opinions on engineering activities, technological achievements, as well as the achievements and traditions of the engineer profession

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:
Lectures: exam in the form of passing theory and tasks.
Classes: evaluation of written tests during the semester and the direct activity during the classes.
Getting extra points related with activity (presentations of examples of applications of mathematics, use of literature, discussion of problems, presenting reports concerning applications of the theory and diligence of the study).

Programme content

Issues:

An overview of the functions of one independent variable. Trigonometric and cyclometric functions. Trigonometric identities. Exponential and logarithmic equations and inequalities.

Complex numbers and their applications - description and different forms (algebraic, trigonometric, exponential); geometric interpretation; activities in a set of complex numbers (Moivre's formula, complex element); polynomials (solving polynomial equations, the basic theorem of algebra); collections on the complex plane.

Numerical sequences. The number of Euler.

POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Limits of functions (at point, left-sided, right-handed, incorrect, in infinite). Continuity of functions. Asymptote.

Derivative of the function of one independent variable.
The de L'Hospital rule.
Monotonicity and convexity of functions (using the differential calculus). Testing (course of variation) of the function.

Derivative applications (optimization tasks).
Indefinite integral - definition of indefinite integral and primary function, properties, basic formulas, integration by substitution and by parts, examples. Integrals of rational functions and selected integrals of irrational functions and trigonometric functions. Reduction formulas.

Definite integral - definition, geometrical interpretation, Newton-Leibnitz formula, properties, basic formulas, integration by substitution and parts. Examples and applications (flat area, lateral area and volume of a solid of revolution).

Matrix calculus - definition of matrices, their types and arithmetic; determinant of the square matrix and its properties (Laplace theorem, Sarrus scheme, calculating the determinant by the elementary operations method using the Laplace development); inverse matrix and methods of finding it; row of the matrix and its calculation.

Systems of linear equations (matrix notation, Cramer's theorem, Kronecker-Capelli theorem, matrix method of Gauss elimination).

PART - 66 (THEORY - 67.5 hours)

MODULE 1. MATHEMATIC

1.1. Arithmetic

Arithmetic terms and symbols, multiplication and division methods, fractions and decimals, factors and multiples, weight, measures and conversion factors, ratios and proportions, means and percentages, areas and quantities, second powers, third powers, square and cubic roots. [2]

1.2. Algebra

a) Calculating simple algebraic expressions, adding, subtracting, multiplying and dividing, using parentheses, simple algebraic fractions; [2]
b) Linear equations and their solutions;

Exponents and powers, negative and fractional powers;
Binary system and other systems;

POZNAN UNIVERSITY OF TECHNOLOGY
EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
pl. M. Skłodowskiej-Curie 5, 60-965 Poznań
Equivalent equations and second degree equations with one unknown; [1]
Teaching methods

1) Lectures:

- interactive lecture with questions to students or specific students,
- using partially a multimedia presentation (e.g. examples, animations),
- theory presented in connection with the current knowledge of students,
- presenting a new topic preceded by a reminder of related content known to students from other subjects,
- taking into account various aspects of the issues presented (economic, ecological, social),
- student activity is taken into account during the course of the assessment.

2) Classes:

- solving sample tasks on the blackboard,
- initiate discussion on solutions,
- homework / additional tasks.

Bibliography

Basic

1. M. Gewert, Z. Skoczylas, Analiza matematyczna 1, Oficyna Wydawnicza GiS, Wrocław 2005.
2. T. Jurlewicz, Z. Skoczylas, Algebra liniowa 1, Oficyna Wydawnicza GiS, Wrocław 2007.
3. I. Foltyńska, Z. Ratajczak, Z. Szafrański: Matematyka dla studentów uczelni technicznych, cz.1, cz.2, Wydawnictwo Politechniki Poznańskiej, Poznań 2004.

Additional

1. J. Banaś, S. Wędrychowicz, Zbiór zadań z analizy matematycznej, Wydawnictwo WNT, Warszawa 1996.
2. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, cz.1, cz.2, Wydawnictwo naukowe PWN, Warszawa 2010.

POZNAN UNIVERSITY OF TECHNOLOGY
 EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS)
 pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Breakdown of average student's workload

	Hours	ECTS
Total workload	93	4,0
Classes requiring direct contact with the teacher	46	2,0
Student's own work (literature studies, preparation for tutorials, preparation for tests) ${ }^{1}$	47	2,0

[^0]
[^0]: ${ }^{1}$ delete or add other activities as appropriate

